5,872 research outputs found

    USCID fourth international conference

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.In addition to increasingly frequent water shortage problems, agricultural water sector is also challenged by environmental issues. The objective of this article is to summarize, as well as propose sustainable strategies for agricultural sector in response to current environmental challenges. For water shortage problems, which are becoming more and more frequent worldwide including Taiwan, measures for irrigation water, such as extending irrigation periods, decreasing number of irrigation application times, or rotational irrigation, are introduced and discussed. When borrowing or transfer of water among sectors is needed in Taiwan, it is usually from agricultural irrigation water to other sectors in almost all cases. The maintenance of water right, and compensation to farmers for their income loss, are the two major issues. As for environmental changes, the impact of the accession of Taiwan to WTO (World Trade Organization) is discussed specifically in this article, and a management scheme in order to save irrigation water, which could be used for other purposes, is suggested in this article

    Synteny analysis in Rosids with a walnut physical map reveals slow genome evolution in long-lived woody perennials.

    Get PDF
    BackgroundMutations often accompany DNA replication. Since there may be fewer cell cycles per year in the germlines of long-lived than short-lived angiosperms, the genomes of long-lived angiosperms may be diverging more slowly than those of short-lived angiosperms. Here we test this hypothesis.ResultsWe first constructed a genetic map for walnut, a woody perennial. All linkage groups were short, and recombination rates were greatly reduced in the centromeric regions. We then used the genetic map to construct a walnut bacterial artificial chromosome (BAC) clone-based physical map, which contained 15,203 exonic BAC-end sequences, and quantified with it synteny between the walnut genome and genomes of three long-lived woody perennials, Vitis vinifera, Populus trichocarpa, and Malus domestica, and three short-lived herbs, Cucumis sativus, Medicago truncatula, and Fragaria vesca. Each measure of synteny we used showed that the genomes of woody perennials were less diverged from the walnut genome than those of herbs. We also estimated the nucleotide substitution rate at silent codon positions in the walnut lineage. It was one-fifth and one-sixth of published nucleotide substitution rates in the Medicago and Arabidopsis lineages, respectively. We uncovered a whole-genome duplication in the walnut lineage, dated it to the neighborhood of the Cretaceous-Tertiary boundary, and allocated the 16 walnut chromosomes into eight homoeologous pairs. We pointed out that during polyploidy-dysploidy cycles, the dominant tendency is to reduce the chromosome number.ConclusionSlow rates of nucleotide substitution are accompanied by slow rates of synteny erosion during genome divergence in woody perennials

    Order picking optimization with order assignment and multiple workstations in KIVA warehouses

    Full text link
    We consider the problem of allocating orders and racks to multiple stations and sequencing their interlinked processing flows at each station in the robot-assisted KIVA warehouse. The various decisions involved in the problem, which are closely associated and must be solved in real time, are often tackled separately for ease of treatment. However, exploiting the synergy between order assignment and picking station scheduling benefits picking efficiency. We develop a comprehensive mathematical model that takes the synergy into consideration to minimize the total number of rack visits. To solve this intractable problem, we develop an efficient algorithm based on simulated annealing and dynamic programming. Computational studies show that the proposed approach outperforms the rule-based policies used in practice in terms of solution quality. Moreover, the results reveal that ignoring the order assignment policy leads to considerable optimality gaps for real-world-sized instances

    Interactions between β Subunits of the KCNMB Family and Slo3: β4 Selectively Modulates Slo3 Expression and Function

    Get PDF
    The pH and voltage-regulated Slo3 K(+) channel, a homologue of the Ca(2+)- and voltage-regulated Slo1 K(+) channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels.To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm.These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit

    Ultrafast Spin-To-Charge Conversion at the Surface of Topological Insulator Thin Films

    Full text link
    Strong spin-orbit coupling, resulting in the formation of spin-momentum-locked surface states, endows topological insulators with superior spin-to-charge conversion characteristics, though the dynamics that govern it have remained elusive. Here, we present an all-optical method that enables unprecedented tracking of the ultrafast dynamics of spin-to-charge conversion in a prototypical topological insulator Bi2_2Se3_3/ferromagnetic Co heterostructure, down to the sub-picosecond timescale. Compared to pure Bi2_2Se3_3 or Co, we observe a giant terahertz emission in the heterostructure than originates from spin-to-charge conversion, in which the topological surface states play a crucial role. We identify a 0.12-picosecond timescale that sets a technological speed limit of spin-to-charge conversion processes in topological insulators. In addition, we show that the spin-to-charge conversion efficiency is temperature independent in Bi2_2Se3_3 as expected from the nature of the surface states, paving the way for designing next-generation high-speed opto-spintronic devices based on topological insulators at room temperature.Comment: 19 pages, 4 figure
    corecore